Phenomenological aspects of the UMSSM

Jonathan Da Silva

Particle Physics group, University of Manchester, United Kingdom

The University of Manchester

IoP2015, University of Manchester, March 30, 2015

G. Bélanger, JDS, U. Laa and A. Pukhov, in preparation

Outline

The model

- **3** Results : Higgs and squark sectors
- 4 Low energy observables
- 5 Dark Matter constraints
- **6** LHC constraints on sparticles

Motivations

Motivations

2 The model

B Results : Higgs and squark sectors

- Low energy observables
- 5 Dark Matter constraints
- **6** LHC constraints on sparticles

Drawbacks of the MSSM

125 GeV Standard Model (SM)-like Higgs boson discovery by ATLAS and CMS collaborations + no other new particles found at LHC Run 1 \rightarrow narrow window for new physics at the TeV scale The Higgs couplings in the Minimal Supersymmetric Standard Model (MSSM) are to a large extent SM-like especially when other new particle masses \gg electroweak scale Challenges of the MSSM :

Drawbacks of the MSSM

125 GeV Standard Model (SM)-like Higgs boson discovery by ATLAS and CMS collaborations + no other new particles found at LHC Run 1 \rightarrow narrow window for new physics at the TeV scale

The Higgs couplings in the Minimal Supersymmetric Standard Model (MSSM) are to a large extent SM-like especially when other new particle masses \gg electroweak scale Challenges of the MSSM :

- * Explain Higgs boson mass at 125 GeV \rightarrow large contributions from 1-loop diagrams involving stops
- $* \rightarrow \text{Constrain stop sector}$

* Very small tan β , i.e. $\approx 1 \Rightarrow$ tricky : TeV-scale SUSY-breaking parameter M_S + SM-like Higgs boson ≈ 125 GeV \Rightarrow Higgs boson mass of 125 GeV requires large tan β

Jonathan Da Silva (U. Manchester) Phenomenological aspects of the UMSSM Manchester, 30/03/2015 4 / 24

The model

1 Motivations

The model

Results : Higgs and squark sectors

- Low energy observables
- 5 Dark Matter constraints
- **6** LHC constraints on sparticles

E₆ inspired model

- * Models with extended gauge symmetries are well motivated within the context of Beyond the Standard model (GUT scale models, extra-dimension motivations, superstring models, strong dynamics models, little Higgs models,...)
- * One of the most analysed U(1) extension originates from a string-inspired E₆ grand unified gauge group (P. Langacker and J. Wang, [Phys. Rev. D58 (1998) 115010], S.F. King, S. Moretti and R. Nevzorov, [Phys. Rev. D73 (2006) 035009],...) E₆ \rightarrow SU(3)_c \times SU(2)_L \times U(1)_Y \times U(1)_X \times U(1)_{ψ}

E₆ inspired model

- * Models with extended gauge symmetries are well motivated within the context of Beyond the Standard model (GUT scale models, extra-dimension motivations, superstring models, strong dynamics models, little Higgs models,...)
- * One of the most analysed U(1) extension originates from a string-inspired E₆ grand unified gauge group (P. Langacker and J. Wang, [Phys. Rev. D58 (1998) 115010], S.F. King, S. Moretti and R. Nevzorov, [Phys. Rev. D73 (2006) 035009],...) E₆ \rightarrow SU(3)_c \times SU(2)_L \times U(1)_Y \times U(1)_{χ} \times U(1)_{ψ}
- * Low energy gauge symmetry considered : SU(3)_c × SU(2)_L × U(1)_Y × U'(1) Coupling constants : g₃, g₂, g_Y and g'₁ = $\sqrt{\frac{5}{3}}$ g_Y
- ***** U'(1) charge :

$$\mathcal{Q}' = \cos \theta_{\mathsf{E}_6} \mathcal{Q}'_{\chi} + \sin \theta_{\mathsf{E}_6} \mathcal{Q}'_{\psi}, \qquad \theta_{\mathsf{E}_6} \in [-\pi/2, \pi/2]$$

* MSSM fields + RH (s)neutrinos + new gauge boson (gaugino) + new singlet (singlino) + O(TeVs) = UMSSM

	\mathcal{Q}'_Q	\mathcal{Q}'_u	\mathcal{Q}_{d}^{\prime}	\mathcal{Q}_L'	$\mathcal{Q}'_{ u}$	\mathcal{Q}'_e	\mathcal{Q}'_{H_u}	\mathcal{Q}'_{H_d}	$\mathcal{Q}_{\mathcal{S}}'$	
$\sqrt{40}Q'_{\chi}$	$^{-1}$	$^{-1}$	3	3	-5	$^{-1}$	2	-2	0	$\Rightarrow \theta_{E_6} = 0$
$\sqrt{24} \mathcal{Q}_{\psi}^{\prime }$	1	1	1	1	1	1	-2	-2	4	$\Rightarrow \theta_{E_6} = \pi/2$

Content

* Superpotential :

$$|\mathcal{W}_{\text{UMSSM}} = \mathcal{W}_{\text{MSSM}}|_{\mu=0} + \lambda SH_{u}H_{d} + \tilde{\nu}_{R}^{*}y_{\nu}\widetilde{\mathsf{L}}\mathsf{H}_{u} + \mathcal{O}(\mathsf{TeVs})$$

- * As the NMSSM, this model solves the μ -problem : $\mu = \lambda \frac{v_s}{\sqrt{2}}$
- * Gauge sector : Physical abelian gauge bosons : Z_1 and Z_2 , mixing between the Z^0 of the SM and the Z', α_Z is the mixing angle $\Rightarrow \tan \beta$ constrained

$$\begin{aligned} \mathbf{Z}_{1} &= \cos \alpha_{\mathbf{Z}} \mathbf{Z}^{\mathbf{0}} + \sin \alpha_{\mathbf{Z}} \mathbf{Z}' \\ \mathbf{Z}_{2} &= -\sin \alpha_{\mathbf{Z}} \mathbf{Z}^{\mathbf{0}} + \cos \alpha_{\mathbf{Z}} \mathbf{Z}' \\ \cos^{2} \beta &= \frac{1}{\mathcal{Q}'_{\mathsf{H}_{\mathsf{d}}} + \mathcal{Q}'_{\mathsf{H}_{\mathsf{u}}}} \left(\frac{\sin 2\alpha_{\mathbf{Z}} (\mathsf{M}^{2}_{\mathsf{Z}_{1}} - \mathsf{M}^{2}_{\mathsf{Z}_{2}})}{\mathsf{v}^{2} \mathsf{g}'_{1} \sqrt{\mathsf{g}^{2}_{\mathsf{Y}} + \mathsf{g}^{2}_{2}}} + \mathcal{Q}'_{\mathsf{H}_{\mathsf{u}}} \right) \end{aligned}$$

Content

Superpotential :

$$|\mathcal{W}_{\mathsf{UMSSM}} = \mathcal{W}_{\mathsf{MSSM}}|_{\mu=0} + \lambda \mathsf{SH}_{\mathsf{u}}\mathsf{H}_{\mathsf{d}} + \tilde{\nu}_{\mathsf{R}}^*\mathsf{y}_{\nu}\widetilde{\mathsf{L}}\mathsf{H}_{\mathsf{u}} + \mathcal{O}(\mathsf{TeVs})$$

- * As the NMSSM, this model solves the μ -problem : $\mu = \lambda \frac{v_s}{\sqrt{2}}$
- * Gauge sector : Physical abelian gauge bosons : Z_1 and Z_2 , mixing between the Z^0 of the SM and the Z', α_Z is the mixing angle $\Rightarrow \tan \beta$ constrained

$$\begin{aligned} \mathbf{Z}_{1} &= \cos \alpha_{\mathbf{Z}} \mathbf{Z}^{\mathbf{0}} + \sin \alpha_{\mathbf{Z}} \mathbf{Z}' \\ \mathbf{Z}_{2} &= -\sin \alpha_{\mathbf{Z}} \mathbf{Z}^{\mathbf{0}} + \cos \alpha_{\mathbf{Z}} \mathbf{Z}' \\ \cos^{2} \beta &= \frac{1}{\mathcal{Q}'_{\mathsf{H}_{\mathsf{d}}} + \mathcal{Q}'_{\mathsf{H}_{\mathsf{u}}}} \left(\frac{\sin 2\alpha_{\mathbf{Z}} (\mathsf{M}^{2}_{\mathsf{Z}_{1}} - \mathsf{M}^{2}_{\mathsf{Z}_{2}})}{\mathsf{v}^{2} \mathsf{g}'_{1} \sqrt{\mathsf{g}^{2}_{\mathsf{Y}} + \mathsf{g}^{2}_{2}}} + \mathcal{Q}'_{\mathsf{H}_{\mathsf{u}}} \right) \end{aligned}$$

- * Gauginos sector : 6 neutralinos in the basis $(\widetilde{B}, \widetilde{W}^3, \widetilde{H}^0_d, \widetilde{H}^0_u, \widetilde{S}, \widetilde{B'})$
- * Sfermion sector : New D-terms $\Delta_F = \frac{1}{2} {g'_1}^2 \mathcal{Q}'_F \left(\mathcal{Q}'_{H_d} v_d^2 + \mathcal{Q}'_{H_u} v_u^2 + \mathcal{Q}'_S v_s^2 \right)$, where $F \in \{Q, u, d, L, e, \nu\}$
 - * Light d-squark and LH slepton for $-\tan^{-1}(3\sqrt{3/5}) < heta_{\mathsf{E}_6} < 0$
 - * Light u-squark and RH slepton for $0 < \theta_{E_6} < \tan^{-1}(\sqrt{3/5})$
 - * Light LH smuon for for $\theta_{E_6} = -\tan^{-1}(3\sqrt{3/5}) \approx -1.16 \rightarrow \text{significant}$ contribution to the anomalous magnetic moment of the muon

Higgs properties

- * MSSM fields + 1 singlet \Rightarrow 3 CP-even Higgs bosons $h_i, i \in \{1,2,3\}$
- * New D-terms for the SM-like Higgs boson mostly h1 :

$$\begin{split} \mathbf{m}_{\mathbf{h}_{1}}^{2}(\text{tree}) &\simeq \mathbf{M}_{\mathbf{Z}0}^{2}\cos^{2}2\beta + \frac{1}{2}\lambda^{2}\mathbf{v}^{2}\sin^{2}2\beta + \mathbf{g}_{1}^{\prime2}\mathbf{v}^{2}\left(\mathcal{Q}_{\mathbf{H}_{d}}^{\prime}\cos^{2}\beta + \mathcal{Q}_{\mathbf{H}_{u}}^{\prime}\sin^{2}\beta\right)^{2} \\ &- \frac{\lambda^{4}\mathbf{v}^{2}}{\mathbf{g}_{1}^{\prime2}\mathcal{Q}_{\mathbf{S}}^{\prime2}}\left(1 - \frac{\mathbf{A}_{\lambda}\sin^{2}2\beta}{\sqrt{2}\lambda\mathbf{v}_{s}} + \frac{\mathbf{g}_{1}^{\prime2}}{\lambda^{2}}\left(\mathcal{Q}_{\mathbf{H}_{d}}^{\prime}\cos^{2}\beta + \mathcal{Q}_{\mathbf{H}_{u}}^{\prime}\sin^{2}\beta\right)\mathcal{Q}_{\mathbf{S}}^{\prime}\right)^{2} \end{split}$$

* To sum up :

Jonathan Da Silva (U. Manchester)

Results : Higgs and squark sectors

Results : Higgs and squark sectors

Motivations

2 The model

3 Results : Higgs and squark sectors

- Low energy observables
- 5 Dark Matter constraints
- **6** LHC constraints on sparticles

Scan and first constraints

Scanning the UMSSM parameter space with the micrOMEGAs code :

Parameter	Range	Parameter	Range	
$m_{\tilde{\nu}_{\tau R}}$	[0, 2] TeV	μ, M_1	[-2, 2] TeV	
M_{Z_2}	[2.2, 7] TeV	$M_2, A_\lambda, A_t, A_b, A_l$	[-4, 4] TeV	
$M_1^{}$	[-20, 20] TeV	M ₃	[0.4, 12] TeV	
θ_{E_6}	$[-\pi/2, \pi/2]$ rad	$m_{\tilde{F}_i}, m_{\tilde{\nu}_i}$	[0, 4] TeV	
α_Z	$[-10^{-3}, 10^{-3}]$ rad	m _t	173.34 \pm 1 GeV Tevatron+LHC	

 $F\in\{Q,u,d,L,e\},\,i\in\{1,2,3\},\,j\in\{1,2\}$ and where $m_{\tilde{F}_2}=m_{\tilde{F}_1},m_{\tilde{\nu}_2}=m_{\tilde{\nu}_1}$ Constraints :

- * $\tilde{\nu}_{\tau R}$ or χ_1^0 is the Lightest Supersymmetric Particle (LSP)
- * LEP constraints on neutralinos, charginos, sleptons and squarks
- * Z': ATLAS + CMS: $M_{Z_2} > 2.57$ TeV for $\theta_{E_6} = \theta_{\psi}$ assuming only SM decay modes \rightarrow limits weakened in the UMSSM but still important so that heavy singlet-like Higgs boson $\rightarrow h_2$ mostly doublet-like
- * Higgs : $m_{h_1} = 125.1 \pm 3$ GeV, HiggsBounds-4.1.3 and HiggsSignals-1.2.0
- * Higgs search in the $\tau^+\tau^-$ mode and other Higgs constraints through a modification of the NMSSMTools code : UMSSMTools

Higgs sector

* Maximum tree-level mass for h_1 reaches ≈ 107 GeV and above the Z^0 mass for mixing angles $\alpha_Z > 2 \times 10^{-5}$ rad

Higgs sector

- * Maximum tree-level mass for h_1 reaches ≈ 107 GeV and above the Z^0 mass for mixing angles $\alpha_Z > 2 \times 10^{-5}$
- * tan $\beta \approx 1$ gives expected m_{h1} if λ sufficiently large and Z₂ not too heavy

Jonathan Da Silva (U. Manchester) Phenomenological aspects of the UMSSM Manchester, 30/03/2015 12 / 24

Squarks

***** Light squarks still allowed \rightarrow add more constraints

Low energy observables

Motivations

2 The model

B Results : Higgs and squark sectors

Low energy observables

- 5 Dark Matter constraints
- **6** LHC constraints on sparticles

Low energy observables

Observable	Value
$\mathscr{B}(B^{\pm} \to \tau^{\pm} \nu_{\tau})$	[0.70, 1.58]×10 ⁻⁴ HFAG
$\mathscr{B}(ar{B}^0 o X_s \gamma)$	[2.99, 3.87]×10 ⁻⁴ HFAG
$\mathscr{B}(B^0_s o \mu^+ \mu^-)$	[1.6, 4.2]×10 ⁻⁹ CMS+LHCb
ΔM_s	$[17.805, 17.717] \text{ ps}^{-1} \text{ HFAG}$
ΔM_d	$[0.504, 0.516] \; { m ps}^{-1} \; { m HFAG}$
δa_{μ}	[7.73, 42.14]×10 ⁻¹⁰ E821

Jonathan Da Silva (U. Manchester) Phenomenological aspects of the UMSSM Manchester, 30/03/2015 15 / 24

Dark Matter constraints

1 Motivations

2 The model

3 Results : Higgs and squark sectors

Low energy observables

5 Dark Matter constraints

6 LHC constraints on sparticles

LSP abundance

- * Dark Matter (DM) observables for either neutralino or RH sneutrino DM candidate : * $\Omega_{LSP}h^2 < 0.1208$ (2 σ upper bound from Planck combination)
 - $\rightarrow \widetilde{B}, \widetilde{H}, \widetilde{W}, \widetilde{S}$ can satisfy relic abundance constraint

Direct detection

- * Dark Matter (DM) observables for either neutralino or RH sneutrino DM candidate :
 - * $\Omega_{LSP}h^2 < 0.1208$ (2 σ upper bound from Planck combination)
 - * WIMP-nucleon scattering cross section limits from LUX
 - \rightarrow DM direct detection experiments can probe entirely some regions, especially for $\tilde{\nu}_{\rm R}$ LSP

Indirect detection

- * Dark Matter (DM) observables for either neutralino or RH sneutrino DM candidate :
 - * $\Omega_{\text{LSP}}h^2 < 0.1208$ (2 σ upper bound from Planck combination)
 - * WIMP-nucleon scattering cross section limits from LUX
 - * Limits on DM annihilation from the dwarf spheroidal satellite galaxies of the Milky Way from Fermi-LAT
 - $\rightarrow b\bar{b}$ channel complementary to direct detection for $\tilde{\nu}_{\rm R}$ LSP

Jonathan Da Silva (U. Manchester) Phenomenological aspects of the UMSSM Manchester, 30/03/2015 19 / 24

LHC constraints on sparticles

1 Motivations

2 The model

3 Results : Higgs and squark sectors

- Low energy observables
- 5 Dark Matter constraints

6 LHC constraints on sparticles

SModelS

- * Using SModelS for interpreting simplified-model results from the LHC
- * Some regions with light squarks remain unconstrained

Nature of the LSP

- * Using SModelS for interpreting simplified-model results from the LHC
- * Some regions with light squarks remain unconstrained \rightarrow Mostly because of \widetilde{W} LSP
- * Important signatures are not covered by existing SMS results

Conclusions

Motivations

2 The model

B Results : Higgs and squark sectors

- Low energy observables
- 5 Dark Matter constraints
- **6** LHC constraints on sparticles

- * New D-terms in the UMSSM \Rightarrow low tan β values still allowed for TeV-scale M_S to get a 125 Higgs boson
 - \Rightarrow sfermion sector impacted
- * δa_{μ} constraint can be easily satisfied for some regions of $\theta_{E_{6}}$
- * χ_1^0 or $\tilde{\nu}_R$ LSP that does not overclose the Universe exclude a large region of the parameter space
- * Viable or excluded regions depend strongly on θ_{E6}
- * Forthcoming direct detection experiments would probe entirely some scenarios
- * Complementarity between direct and indirect detection of DM, especially for $\tilde{\nu}_{R}$ LSP
- Simplified-model results from the LHC can exlude scenarios but some interesting signatures obtained in this study are not yet covered in SMS results

BACKUP

Jonathan Da Silva (U. Manchester) Phenomenological aspects of the UMSSM Manchester, 30/03/2015

BACKUP

 X_t - M_S plane :

Some missing topologies with highest cross section for \widetilde{H} LSP

