Lier deux domaines de recherche actuelle en physique : la supersymétrie et la matière noire

Jonathan Da Silva

Laboratoire d'Annecy-le-Vieux de Physique Théorique

Journées de Rencontre Jeunes Chercheurs 2011, Annecy, 4 - 10 Décembre 2011

G. Bélanger, J. Da Silva and A. Pukhov, arXiv:1110.2414 [hep-ph], soon on JCAP

Outline

- Motivations
 - Need of dark matter
 - Need of supersymmetry
- 2 Candidates
 - Candidates
 - Case of sneutrinos
- 3 The UMSSM
 - Contents
 - Constraints
- 4 CDM interactions
 - WIMP annihilation
 - Scattering on nucleons
- 5 Some results
 - Characteristics of the global scan
 - Output
- Conclusion and perspectives

Motivations

- Motivations
 - Need of dark matter

Need of dark matter

Since 1933 and Zwicky observations, we accumulated evidences for dark matter existence :

Galaxy scale : rotation curves of galaxies

K. G. Begeman, A. H. Broeils and R. H. Sanders, 1991, MNRAS, 249, 523

Circular velocity
$$v(r) = \sqrt{\frac{GM(r)}{r}}$$
 expected to fall in $\frac{1}{\sqrt{r}}$, observed approximately constant \Rightarrow need of a halo with $M(r) \propto r$

Need of dark matter

Since 1933 and Zwicky observations, we accumulated evidences for dark matter existence:

Galaxy clusters scale : example of the bullet cluster

A direct empirical proof of the existence of dark matter, D. Clowe et al., astro-ph/0608407

Study of X-rays and gravitational lensing effect of this cluster : discrepancy between baryonic matter and gravitational potential

⇒ non-negligible non-colliding component of clusters

Need of dark matter

Since 1933 and Zwicky observations, we accumulated evidences for dark matter existence :

Cosmological scale : the Cosmic Microwave background (CMB)

The aim is to match the CMB power spectrum with some fixed parameters of a cosmological model $\Rightarrow \Omega_{\rm s}h^2=0.0226\pm0.0005$ and $\Omega_{\rm m}h^2=0.1123\pm0.0035$

DM has to be stable and weakly charged under the standard model gauge group Conservation of DM structures ⇒ warm or cold DM

- Motivations
 - Need of dark matter
 - Need of supersymmetry
- 2 Candidates
 - Candidates
 - Case of sneutrinos
- 3 The UMSSN
 - Contents
 - Constraints
- 4 CDM interactions
 - WIMP annihilation
 - Scattering on nucleons
- Some results
 - Characteristics of the global scan
 - Output
 - Conclusion and perspectives

Hierarchy problem of the Higgs mass : no symmetry protects Higgs mass

Hierarchy problem of the Higgs mass : no symmetry protects Higgs mass

⇒ Supersymmetry, symmetry between fermions and bosons plays this role by adding one-loop corrections:

S
$$- - - - - - - - - \Delta m_H^2 = \frac{|\lambda_S|^2}{16\pi^2} \Lambda^2 + \dots$$

⇒ Cancellation of quadratic divergence

Unification of coupling at GUT scale :

Unification of coupling at GUT scale :

 \Rightarrow Easy in supersymmetry!!

Unification of coupling at GUT scale:

⇒ Easy in supersymmetry!!

- Decay of proton in supersymmetry \Rightarrow need of R-Parity $P_R = (-1)^{3(B-L)+2s}$
 - \Rightarrow Lightest supersymmetric particle (LSP) is stable

• Decay of proton in supersymmetry \Rightarrow need of R-Parity $P_R = (-1)^{3(B-L)+2s^{-1}}$

⇒ Lightest supersymmetric particle (LSP) is stable

Some of them are weakly charged, so \dots

DM candidates in supersymmetric models!!!

Candidates

- Candidates
 - Candidates

Some candidates

- Assuming R-parity, 2 cold DM (WIMPs) candidates in the MSSM:
 - ► Lightest neutralino : a lot of studies ⇒ good DM candidate

Some candidates

- Assuming R-parity, 2 cold DM (WIMPs) candidates in the MSSM:
 - Lightest neutralino : a lot of studies ⇒ good DM candidate
 - Left-handed (LH) sneutrino : too high coupling with $Z^0 \Rightarrow$ don't satisfy experimental constraints on spin independent direct detection cross section

Some candidates

- Assuming R-parity, 2 cold DM (WIMPs) candidates in the MSSM:
 - Lightest neutralino : a lot of studies ⇒ good DM candidate
 - Left-handed (LH) sneutrino : too high coupling with $Z^0 \Rightarrow$ don't satisfy experimental constraints on spin independent direct detection cross section

E. Aprile et al., arXiv:1104.2549 [astro-ph.CO]

Others SUSY candidates to DM: Gravitino, axino, ...

- Candidates

 - Case of sneutrinos

 Neutrino oscillations indicative of massive neutrinos ⇒ possibility to add a right-handed (RH) neutrino field

- Neutrino oscillations indicative of massive neutrinos ⇒ possibility to add a right-handed (RH) neutrino field
 - ⇒ Extensions of the MSSM with RH (s)neutrino can provide DM candidate

- Neutrino oscillations indicative of massive neutrinos ⇒ possibility to add a right-handed (RH) neutrino field
 - ⇒ Extensions of the MSSM with RH (s)neutrino can provide DM candidate
- Different mechanisms appear to obtain sneutrino DM :
 - Mixing between LH and RH sneutrinos: the lightest state can be DM candidate hep-ph/0006312, hep-ph/0007018, arXiv:0911.4489, arXiv:0910.2475, arXiv:1008.0580

- Neutrino oscillations indicative of massive neutrinos ⇒ possibility to add a right-handed (RH) neutrino field
 - ⇒ Extensions of the MSSM with RH (s)neutrino can provide DM candidate
- Different mechanisms appear to obtain sneutrino DM :
 - Mixing between LH and RH sneutrinos: the lightest state can be DM candidate hep-ph/0006312, hep-ph/0007018, arXiv:0911.4489, arXiv:0910.2475, arXiv:1008.0580
 - RH sneutrino condensate arXiv :0710 2360

- Neutrino oscillations indicative of massive neutrinos ⇒ possibility to add a right-handed (RH) neutrino field
 - ⇒ Extensions of the MSSM with RH (s)neutrino can provide DM candidate
- Different mechanisms appear to obtain sneutrino DM :
 - Mixing between LH and RH sneutrinos: the lightest state can be DM candidate hep-ph/0006312, hep-ph/0007018, arXiv:0911.4489, arXiv:0910.2475, arXiv:1008.0580
 - RH sneutrino condensate arXiv :0710.2360
 - Sneutrino in inverse see-saw mechanism models arXiv:0806.3225, arXiv:1110.1366
 - **.**..

- $lacktriangled Neutrino oscillations indicative of massive neutrinos <math display="inline">\Rightarrow$ possibility to add a right-handed (RH) neutrino field
 - ⇒ Extensions of the MSSM with RH (s)neutrino can provide DM candidate
- Different mechanisms appear to obtain sneutrino DM :
 - Mixing between LH and RH sneutrinos: the lightest state can be DM candidate hep-ph/0006312, hep-ph/0007018, arXiv:0911.4489, arXiv:0910.2475, arXiv:1008.0580
 - RH sneutrino condensate arXiv :0710.2360
 - ► Sneutrino in inverse see-saw mechanism models arXiv :0806.3225,
 - arXiv :1110.1366
- Here we want generate RH neutrino mass by introducing Dirac mass terms ⇒ supersymmetric partner can be at the TeV scale
- This candidate couples to new vector, scalar field by adding a new abelian gauge group, it's the UMSSM

The UMSSM

- The UMSSM
 - Contents

- Extending the SM gauge group is well-motivated in superstrings and grand unified theories hep-ph/9511378
- Symmetry group : $SU(3)_c \times SU(2)_L \times U(1)_Y \times U'(1)$ Coupling constants associated : g_3 , g_2 , g_Y and $g_1' = g_1 = \sqrt{\frac{5}{3}g_Y}$
- As in the NMSSM, $W = W_{MSSM}|_{\mu=0} + \lambda SH_{\mu}H_{d}$
- U'(1) stems from the breaking of E_6 group \Rightarrow it's a combination :

$$Q' = \cos heta_{ extsf{E}_6} \, Q_\chi + \sin heta_{ extsf{E}_6} \, Q_\psi, \qquad heta_{ extsf{E}_6} \in [-\pi/2,\pi/2]$$

Q' choice	Q	ū	d	L	ē	$\bar{\nu}$	Hu	H_d	S
$\sqrt{40}Q_{\chi}$	-1	-1	3	3	-1	-5	2	-2	0
$\sqrt{24}Q_{\psi}$	1	1	1	1	1	1	-2	-2	4

Some differences with the MSSM:

MSSM

Some differences with the MSSM:

Some differences with the MSSM:

UMSSM

Relevant free parameters :

- WIMP mass $M_{\tilde{\nu}_R}$
- Higgs sector $\Rightarrow \mu$, A_{λ}
- Gauge sector : M_{Z_2} and $\alpha_Z \Rightarrow t_\beta$ constrained
- Gaugino sector : M_1 , M'_1 and again μ ! (higgsino NLSP)
- θ_{E_6}
- Soft terms at 2 TeV ⇒ no sfermion coannihilation

- 1 Motivations
 - Need of dark matter
 - Need of supersymmetry
- 2 Candidates
 - Candidates
 - Case of sneutrinos
- The UMSSM
 - Contents
 - Constraints
- 4 CDM interactions
 - WIMP annihilation
 - Scattering on nucleons
- Some results
 - Characteristics of the global scar
 - Output
 - Conclusion and perspectives

On our CDM candidate:

- Relic density at 3σ with $\Omega_{WIMP} h^2 = 0.1123 \pm 0.0035$
- Spin independent direct detection cross section

On our CDM candidate: On the model in general:

> Higgs mass constraints from LEP and LHC : 114.4 GeV $< m_{h_1} <$ 144 GeV (now 141 GeV)

On our CDM candidate :

On the model in general:

- $^{\bullet}$ Higgs mass constraints from LEP and LHC : 114.4 GeV $< m_{h_1} <$ 144 GeV $({\rm now}~141~{\rm GeV})$
- New Z boson mass constraints from ATLAS :

Q' choice	Q_{ψ}	Q_N	Q_{η}	Q_I	Q_S	Q_{χ}
M_{Z_2} (TeV)	1.49	1.52	1.54	1.56	1.60	1.64

• Z^0 properties $\Rightarrow \alpha_Z \lesssim 10^{-3} \; (M_W = \cos \theta_W Z^0, \; \text{not} \; Z_1 \,!)$

On our CDM candidate:

On the model in general:

- Higgs mass constraints from LEP and LHC : 114.4 GeV $< m_{h_1} <$ 144 GeV (now 141 GeV)
- New Z boson mass constraints from ATLAS :

Q' choice			Q_{η}		Q_S	
M_{Z_2} (TeV)	1.49	1.52	1.54	1.56	1.60	1.64

- Z^0 properties $\Rightarrow \alpha_Z \lesssim 10^{-3} \; (M_W = \cos \theta_W Z^0, \text{ not } Z_1!)$
- LEP constraints on sparticles masses

On our CDM candidate:

On the model in general:

- Higgs mass constraints from LEP and LHC : 114.4 GeV < m_{h_1} < 144 GeV (now 141 GeV)</p>
- New Z boson mass constraints from ATLAS :

Q' choice		Q_N	Q_{η}	Q_I	Q_S	Q_{χ}
M_{Z_2} (TeV)	1.49	1.52	1.54	1.56	1.60	1.64

- Z^0 properties $\Rightarrow \alpha_Z \lesssim 10^{-3}$ ($M_W = \cos \theta_W Z^0$, not Z_1 !)
- LEP constraints on sparticles masses
- $B_{d,s}^0 \bar{B}_{d,s}^0$ mesons physics constraints : $\Delta M_{d,s}$ mass differences with one-loop supersymmetric contribution with charginos and higgsinos \Rightarrow supersymmetry can increase difference between observed and standard model expected values :

$$\Delta m_s = 17.77 \pm 0.12 \ ps^{-1}(\text{CDF}), \ \Delta m_s^{SM} = 20.5 \pm 3.1 \ ps^{-1}$$

 $\Delta m_d = 0.507 \pm 0.004 \ ps^{-1}(\text{HFAG}), \ \Delta m_d^{SM} = 0.59 \pm 0.19 \ ps^{-1}$
 $(\Delta m_s = 17.725 \pm 0.049 \ ps^{-1} \text{LHCb})$

CDM interactions

- Motivations
 - Need of dark matter
 - Need of supersymmetry
- 2 Candidates
 - Candidates
 - Case of sneutrinos
- 3 The UMSSN
 - Contents
 - Constraints
- CDM interactions
 - WIMP annihilation
 - Scattering on nucleons
 - Some results
 - Characteristics of the global scan
 - Output
 - Conclusion and perspectives

Parameter space regions with $\Omega_{\it WIMP}\,h^2\approx 0.1 \Rightarrow$ need to increase the annihilation cross section :

Parameter space regions with $\Omega_{WMP} h^2 \approx 0.1 \Rightarrow$ need to increase the annihilation cross section :

• WIMP mass near $m_{h_1}/2$:

Parameter space regions with $\Omega_{WIMP} h^2 \approx 0.1 \Rightarrow$ need to increase the annihilation cross section :

• WIMP mass near $m_{h_1}/2$:

• WIMP mass near $M_{Z_2}/2$ (also $m_{h_i}/2$):

Parameter space regions with $\Omega_{\it WIMP} \, h^2 pprox 0.1 \Rightarrow$ need to increase the annihilation cross section :

• WIMP mass near $m_{h_1}/2$:

• WIMP mass near $M_{\mathbb{Z}_2}/2$ (also $m_{h_i}/2$):

• WIMP mass near $m_{h_i}/2$ or above W pair threshold :

Parameter space regions with $\Omega_{WIMP}h^2 \approx 0.1 \Rightarrow$ need to increase the annihilation cross section :

- WIMP mass near $m_{h_1}/2$:
 - $\tilde{\nu}_R$ $\tilde{\nu}_R^*$ \tilde{b}

• WIMP mass near $M_{Z_2}/2$ (also $m_{h_i}/2$):

• WIMP mass near $m_{h_i}/2$ or above W pair threshold :

- $\tilde{\nu}_R$ h_1 $\tilde{\nu}_P^*$ h_i h_1
- Coannihilation processes (mainly higgsino-like) :

Parameter space regions with $\Omega_{WMMP} h^2 \approx 0.1 \Rightarrow$ need to increase the annihilation cross section :

- WIMP mass near $m_{h_1}/2$
- WIMP mass near $M_{Z_2}/2$ (also $m_{h_i}/2$)
- WIMP mass near $m_{h_i}/2$ or above W pair threshold
- Coannihilation processes (mainly higgsino-like)

- 1 Motivations
 - Need of dark matter
 - Need of supersymmetry
- 2 Candidates
 - Candidates
 - Case of sneutrinos
- 3 The UMSSN
 - Contents
 - Constraints
- 4 CDM interactions
 - WIMP annihilation
 - Scattering on nucleons
 - Some results
 - Characteristics of the global scan
 - Output
 - Conclusion and perspectives

• Mainly abelian gauge bosons contribution, h_1 for LSP mass $\lesssim 200$ GeV

• Mainly abelian gauge bosons contribution, h_1 for LSP mass $\lesssim 200$ GeV

 \Rightarrow for some U'(1) models we can have a good suppression of the gauge boson or/and Higgs part :

• Mainly abelian gauge bosons contribution, h_1 for LSP mass $\lesssim 200$ GeV

 \Rightarrow for some U'(1) models we can have a good suppression of the gauge boson or/and Higgs part :

⇒ for other models, huge constraints on the parameter space appear :

Some results

- 1 Motivations
 - Need of dark matter
 - Need of supersymmetry
- 2 Candidates
 - Candidates
 - Case of sneutrinos
- 3 The UMSSN
 - Contents
 - Constraints
- 4 CDM interactions
 - WIMP annihilation
 - Scattering on nucleons
- 5 Some results
 - Characteristics of the global scan
 - Output
 - Conclusion and perspectives

Characteristics of the global scan

	Fixed pa	ramete	rs	Free parameters		
Soft terms				Name	Domain of variation	
m_{Q_i}	2 TeV	m_{L_i}	2 TeV	$M_{ ilde{ u}_R}$	[0, 1.5] TeV	
$m_{\bar{u}_i}$	2 TeV	$m_{\bar{d}_i}$	2 TeV	M_{Z_2}	[1.3, 3] TeV	
$m_{ar{e}_i}$	2 TeV	$m_{ar{ u}_i}$	2 TeV	μ	[0.1, 2] TeV	
$i \in \{1, 2, 3\}, j \in \{1, 2\}$				A_{λ}	[0, 2] TeV	
Trilinear couplings $+M_K$				θ_{E_6}	$[-\pi/2, \pi/2]$ rad	
A_t	1 TeV	A_b	0 TeV	α_Z	$[-3.10^{-3}, 3.10^{-3}]$ rad	
A_c	0 TeV	A_s	0 TeV	M_1	[0.1, 2] TeV	
A_u	0 TeV	A_d	0 TeV	M_1'	[0.1, 2] TeV	
A_I	0 TeV	M_K	1 eV	$M_2 =$	$= 2M_1 \text{ et } M_3 = 6M_1$	

- Some results

 - Output

Output

 μ vs. WIMP mass

 M_{Z_2} vs. WIMP mass

Output

Direct detection cross section vs. WIMP mass

 M_{Z_2} vs. θ_{E_6}

Lower is $|\theta_{E_6}|$, higher are Z_2 processes in direct detection cross section \Rightarrow huge constraint

Large SUSY corrections proportional to $\frac{1}{t_{eta}^4} \Rightarrow$ small values of t_{eta} very constrained by $\Delta M_{
m s}$:

- 1 Motivations
 - Need of dark matter
 - Need of supersymmetry
- 2 Candidates
 - Candidates
 - Case of sneutrinos
- 3 The UMSSN
 - Contents
 - Constraints
- 4 CDM interactions
 - WIMP annihilation
 - Scattering on nucleons
- Some results
 - Characteristics of the global scan
 - Output
- 6 Conclusion and perspectives

- RH sneutrino is a viable dark matter candidate in the UMSSM!!
 - it respects experimental limits in the case of some annihilation processes :
 - Resonance $(h_1, Z_2 \text{ and singlet-like Higgs})$
 - Coannihilation (neutralinos, charginos, others sfermions)
 - Annihilation into W pairs generally with exchange of h₁
- Direct detection experiments strongly constrain the model as well as Δm_s

RH sneutrino is a viable dark matter candidate in the UMSSM!!

it respects experimental limits in the case of some annihilation processes :

- Resonance $(h_1, Z_2 \text{ and singlet-like Higgs})$
- Coannihilation (neutralinos, charginos, others sfermions)
- \triangleright Annihilation into W pairs generally with exchange of h_1
- lacktriangle Direct detection experiments strongly constrain the model as well as $\Delta m_{
 m s}$

- Neutralino can also be a good DM candidate in this gauge extension of the MSSM arXiv:0811.2204
- More careful study of the UMSSM Higgs sector could provide hidden Higgs scenarios

- RH sneutrino is a viable dark matter candidate in the UMSSM!!
 - it respects experimental limits in the case of some annihilation processes :
 - Resonance $(h_1, Z_2 \text{ and singlet-like Higgs})$
 - Coannihilation (neutralinos, charginos, others sfermions)
 - ▶ Annihilation into W pairs generally with exchange of h₁
- lacktriangle Direct detection experiments strongly constrain the model as well as Δm_s

- Neutralino can also be a good DM candidate in this gauge extension of the MSSM arXiv:0811.2204
- More careful study of the UMSSM Higgs sector could provide hidden Higgs scenarios

Thanks for your attention!

BACKUP

Dark matter hunting

Direct detection experiments (XENON, CDMS,...)

Dark matter hunting

• Indirect detection : dark matter annihilation into γ , e^+ , \bar{p} , \bar{d} , ν (AMS, Fermi, HESS, PAMELA,...)

AMS

The case of colliders

lacktriangledown Missing energy, new signals,... at colliders ightarrow dark matter and supersymmetry hunting

LHC

UMSSM fields

Chiral supermultiplets							
Supermultiplet	spin 0	spin 1/2	$SU(3)_c$, $SU(2)_L$, $U(1)_Y$, $U'(1)$				
squarks, quarks	Q	$(\widetilde{u}_L \ \widetilde{d}_L)$	$(u_L d_L)$	$(3, 2, \frac{1}{6}, Q'_Q)$			
(3 families)	ū	\widetilde{u}_R^*	\bar{u}_R	$(\bar{\bf 3},{\bf 1},-\frac{2}{3},{\bf Q}_{\scriptscriptstyle I\hspace{1em}I}')$			
	ā	$\widetilde{u}_R^* \ \widetilde{d}_R^*$	\bar{d}_R	$(\bar{\bf 3}, {\bf 1}, \frac{1}{3}, Q'_d)$			
sleptons, leptons	L	$(\widetilde{\nu}_{L} \ \widetilde{e}_{L})$	$(\nu_{L} \; e_{L})$	$(1, 2, -\frac{1}{2}, Q'_{L})$			
(3 families)	$ar{ u}$	$\widetilde{ u}_{R}^{*}$	$ar{ u}_R$	$({f 1},{f 1},{f 0},Q_{ar u}')$			
	ē	\widetilde{e}_R^*	\bar{e}_R	$(1, 1, \frac{1}{6}, Q_e')$			
Higgs, higgsinos	Hu	$(H_u^+ \ H_u^0)$	$(\widetilde{H}_{u}^{+} \ \widetilde{H}_{u}^{0})$	$(1, 2, \frac{1}{2}, Q'_{H_{II}})$			
	H_d	$(H_d^0 H_d^-)$	$(\widetilde{H}_d^0 \ \widetilde{H}_d^-)$	$(1, 2, -\frac{1}{2}, Q'_{H_d})$			
	5	5	\widetilde{S}	$(1, 1, 0, Q'_S)$			

Vector supermultiplets							
Supermultiplets	spin 1/2	spin 1	$SU(3)_c$, $SU(2)_L$, $U(1)_Y$, $U'(1)$				
gluino, gluon	\widetilde{g}	g	(8, 1, 0, 0)				
winos, W bosons	$\widetilde{W}^{\pm} \widetilde{W}^3$	$W^{\pm} W^3$	(1, 3, 0, 0)				
bino, B boson	\widetilde{B}	В	(1, 1, 0, 0)				
bino', B' boson	$\widetilde{B'}$	B'	(1, 1, 0, 0)				

Some new lagrangian terms

Superpotential:

$$W_{MSSM} = \bar{u}y_uQH_u - \bar{d}y_dQH_d - \bar{e}y_eLH_d + \mu H_uH_d$$

$$W_{UMSSM} = W_{MSSM}(\mu = 0) + \lambda SH_uH_d + \bar{\nu}y_\nu LH_u$$

Soft supersymmetry breaking :

$$\begin{split} \mathcal{L}_{soft}^{MSSM} &= -\frac{1}{2}(M_3\widetilde{g}\widetilde{g}+M_2\widetilde{W}\widetilde{W}+M_1\widetilde{B}\widetilde{B}+\mathrm{c.c.}) \\ &-(\widetilde{u}_R^*a_u\widetilde{Q}H_u-\widetilde{d}_R^*a_d\widetilde{Q}H_d-\widetilde{e}_R^*a_e\widetilde{L}H_d+\mathrm{c.c.}) \\ &-\widetilde{Q}^\dagger m_Q^2\widetilde{Q}-\widetilde{L}^\dagger m_L^2\widetilde{L}-\widetilde{u}_R^*m_e^2\widetilde{u}_R-\widetilde{d}_R^*m_d^2\widetilde{d}_R-\widetilde{e}_R^*m_e^2\widetilde{e}_R \\ &-m_{H_u}^\dagger H_u-m_{H_d}^\dagger H_d^\dagger H_d-(bH_uH_d+\mathrm{c.c.}) \\ \mathcal{L}_{soft}^{UMSSM} &= &\mathcal{L}_{soft}^{MSSM}(b=0)-\left(\frac{1}{2}M_1'\widetilde{B'}\widetilde{B'}+M_K\widetilde{B}\widetilde{B'}+\widetilde{v}_R^*a_\nu\widetilde{L}H_u+\mathrm{c.c.}\right) \\ &-\widetilde{v}_R^*m_{\widetilde{\nu}}^2\widetilde{v}_R-(\lambda A_\lambda SH_uH_d+\mathrm{c.c.})-m_S^2S^*S \end{split}$$

LanHEP, A. Semenov, arXiv:0805.0555 [hep-ph]

Reason of constrained t_{β}

Knowing that

$$\Delta^2 = rac{g_1'\sqrt{{g'}^2+g_2^2}}{2} v^2 (Q_2' s_eta^2 - Q_1' c_eta^2),$$

$$c_{eta}^2 = rac{1}{Q_1' + Q_2'} \left(rac{\sin 2lpha_{ZZ'} (M_{Z_1}^2 - M_{Z_2}^2)}{v^2 g_1' \sqrt{{g'}^2 + g_2^2}} + Q_2'
ight).$$

Higgs masses

$$\begin{split} m_{A0}^2 &= \frac{\lambda A_{\lambda} \sqrt{2}}{\sin 2\phi} v + \Delta_{EA} & \tan \phi = \frac{v \sin 2\beta}{2v_s} \\ m_{H\pm}^2 &= \frac{\lambda A_{\lambda} \sqrt{2}}{\sin 2\beta} v_s - \frac{\lambda^2}{2} v^2 + \frac{g_2^2}{2} v^2 + \Delta_{\pm} & \tan \beta = \frac{v_u}{v_d} \\ M_{CPeven}^2 &: \\ \left(\mathcal{M}_+^0\right)_{11} &= \left[\frac{\left(g'^2 + g_2^2\right)^2}{4} + Q_1'^2 g_1'^2\right] \left(v c_{\beta}\right)^2 + \frac{\lambda A_{\lambda} t_{\beta} v_s}{\sqrt{2}} + \Delta_{11} \\ \left(\mathcal{M}_+^0\right)_{12} &= -\left[\frac{\left(g'^2 + g_2^2\right)^2}{4} - \lambda^2 - Q_1' Q_2' g_1'^2\right] v^2 s_{\beta} c_{\beta} - \frac{\lambda A_{\lambda} v_s}{\sqrt{2}} + \Delta_{12} \\ \left(\mathcal{M}_+^0\right)_{13} &= \left[\lambda^2 + Q_1' Q_2' g_1 v^2\right] v c_{\beta} v_s - \frac{\lambda A_{\lambda} v s_{\beta}}{\sqrt{2}} + \Delta_{13} \\ \left(\mathcal{M}_+^0\right)_{22} &= \left[\frac{\left(g'^2 + g_2^2\right)^2}{4} + Q_2'^2 g_1'^2\right] \left(v s_{\beta}\right)^2 + \frac{\lambda A_{\lambda} v_s}{t_{\beta} \sqrt{2}} + \Delta_{22} \\ \left(\mathcal{M}_+^0\right)_{23} &= \left[\lambda^2 + Q_2' Q_2' g_1'^2\right] v s_{\beta} v_s - \frac{\lambda A_{\lambda} v c_{\beta}}{\sqrt{2}} + \Delta_{23} \\ \left(\mathcal{M}_+^0\right)_{33} &= Q_3'^2 g_1'^2 v_s^2 + \frac{\lambda A_{\lambda} v^2 s_{\beta} c_{\beta}}{v_s \sqrt{2}} + \Delta_{33} \end{split}$$

Vernon Barger, Paul Langacker, Hye-Sung Lee and Gabe Shaughnessy, arXiv:hep-ph/0603247

Direct detection constraint

Abelian gauge boson contribution to direct detection :

$$\begin{split} \sigma_{\tilde{\nu}_RN}^{Z_1,Z_2} &= \frac{\mu_{\tilde{\nu}_RN}^2}{\pi} (g_1'Q_{\tilde{\nu}}')^2 [(y(1-4s_W^2)+y')Z + (-y+2y')(A-Z)]^2 \\ \text{with } y &= \frac{g'\sin\alpha_Z\cos\alpha_Z}{4\sin\theta_W} \left(\frac{1}{M_{Z_2}^2} - \frac{1}{M_{Z_1}^2}\right), \; y' = -\frac{g_1'}{2} Q_V'^d \left(\frac{\sin^2\alpha_Z}{M_{Z_1}^2} + \frac{\cos^2\alpha_Z}{M_{Z_2}^2}\right) \end{split}$$

 \Rightarrow stringent constraints for small $|\theta_{E_6}|$ because of $Q_V^{'d}$ term

Coannihilation with sfermions

Sparticles sector:

$$M_{\tilde{f}}^2 = \begin{pmatrix} m_{\text{soft}}^2 + m_{\tilde{f}}^2 + M_{Z^0}^2 \cos 2\beta (l_{\tilde{f}}^3 - e_f \sin^2 \theta_W) + \Delta_f & m_f (A_f - \mu(t_\beta)^{-2l_{\tilde{f}}^3}) \\ m_f (A_f - \mu(t_\beta)^{-2l_{\tilde{f}}^3}) & m_{\tilde{soft}}^2 + M_{Z^0}^2 \cos 2\beta (l_{\tilde{f}}^3 - e_{\tilde{f}} \sin^2 \theta_W) + m_{\tilde{f}}^2 + \Delta_{\tilde{f}} \end{pmatrix}$$

where
$$\Delta_f = \frac{1}{2} g_1'^2 Q_f'(Q_{H_d}' v_d^2 + Q_{H_u}' v_u^2 + Q_S' v_s^2) \Rightarrow$$
 Coannihilations :

 $heta_{E_6} > 0$: generally $ilde{t_1}$

 $heta_{E_6} < 0$: generally RH down sqarks