Phenomenological aspects of the UMSSM

Jonathan Da Silva

Particle Physics group, University of Manchester, United Kingdom

The University of Manchester

Particle Physics seminar, University of Manchester, March 21, 2014

G. Bélanger, JDS and A. Pukhov, JCAP 1112 (2011) 014, [arXiv:1110.2414] JDS, PhD thesis : [arXiv:1312.0257] G. Bélanger, JDS et al., in progress

Outline

The model

4 Low $\tan \beta$ region

Introduction

The mode

3 RH sneutrino DM candidate

4 Low tan β region

5 Conclusions

***** Particle Physics (SM)

- * Hierarchy problem between EW (~ 100 GeV) and higher scales (Planck $\sim 10^{19}$ GeV, inflation $\sim 10^{16}$ GeV with BICEP2 measurements, [arXiv:1403.3985]??)
- Grand Unification (GUT)
- * Neutrino sector (Dirac, Majorana??)
- * ...

SM interactions, at tree-level

4 / 31

* Cosmology (ΛCDM)

- Simple cosmological model which fits even the most accurate measurements (Planck satellite)
- But needs Dark Energy and Dark Matter (DM, other evidence : rotation curves of galaxies, galaxy clusters, ...)

P.A.R. Ade et al., [arXiv:1303.5062]

★ Cosmology (ΛCDM)

- Simple cosmological model which fits even the most accurate measurements (Planck satellite)
- But needs Dark Energy and Dark Matter (DM, other evidence : rotation curves of galaxies, galaxy clusters, ...)
- ***** DM made of particles \neq SM particles :
 - ✗ baryons : BBN, CMB, ...
 - **X** charged leptons : we would have seen DM (overproduction of γ , ...)
 - **X** neutrinos : too light \Rightarrow low relic density + HDM

★ Cosmology (ΛCDM)

- Simple cosmological model which fits even the most accurate measurements (Planck satellite)
- But needs Dark Energy and Dark Matter (DM, other evidence : rotation curves of galaxies, galaxy clusters, ...)
- ***** DM made of particles \neq SM particles :
 - ✗ baryons : BBN, CMB, ...
 - **X** charged leptons : we would have seen DM (overproduction of γ , ...)
 - **X** neutrinos : too light \Rightarrow low relic density + HDM
- ⇒ Example of DM candidate which gives the right abundance : Weakly Interacting Massive Particle (WIMP)

Candidates can be found beyond the Standard Model Here : Supersymmetry (SUSY)

Supersymmetry

- ***** Fermions \Leftrightarrow bosons \Rightarrow solution to the Hierarchy problem
- *** Unification at GUT scale**
- * LSP/DM (supersymmetry breaking, R-Parity)

The lightest supersymmetric particle (LSP) is stable, at the GeV-TeV scale, and can be weakly charged under the SM gauge group

Supersymmetry

- ***** Fermions \Leftrightarrow bosons \Rightarrow solution to the Hierarchy problem
- * Unification at GUT scale
- * LSP/DM (supersymmetry breaking, R-Parity)

The lightest supersymmetric particle (LSP) is stable, at the GeV-TeV scale, and can be weakly charged under the SM gauge group

⇒ DM candidates in supersymmetric models

* Examples with the Minimal Supersymmetric Standard Model (MSSM) :

Drawbacks of the MSSM

***** The μ -problem :

MSSM superpotential, $W_{MSSM} \supset \mu H_u H_d$, μ SUSY preserving : natural values are $\mu = 0$ (chargino mass) or very large, e.g. $\mu \sim M_{Pl}$, but : minimization condition of the MSSM potential \Rightarrow

$$\begin{split} \sin 2\beta &= \frac{2b}{m_{H_u}^2 + m_{H_d}^2 + 2|\mu|^2}, \\ M_Z^2 &= \frac{|m_{H_d}^2 - m_{H_u}^2|}{\sqrt{1 - \sin^2 2\beta}} - m_{H_u}^2 - m_{H_d}^2 - 2|\mu|^2 \end{split}$$

No fine-tuned cancellation to obtain the expected Z boson mass needs $b,m_{H_u}^2,m_{H_d}^2$ and $\mu\sim(10-100)\times M_7^2$:

- ✓ SUSY breaking parameters b, m²_{H_µ} and m²_{H_µ}
- Χ μ
- \Rightarrow MSSM does not account for EW scale μ term

Drawbacks of the MSSM

- ***** The μ -problem
- * Very small tan β , i.e. $\approx 1 \Rightarrow$ tricky : TeV-scale SUSY-breaking parameter M_S + SM-like Higgs boson ≈ 125 GeV
 - \Rightarrow Higgs boson mass of 125 GeV requires large $\tan\beta$

Possible solutions

* Generating an effective μ term thanks to a Yukawa coupling λ between ${\rm H_{u}, H_{d}}$ and a new scalar field S

 $\mathcal{W}_{MSSM} \rightarrow \mathcal{W}_{MSSM}|_{\mu=0} + \lambda SH_uH_d$

* Avoiding very small λ (new U(1)_{PQ} global symmetry \rightarrow axion searches), the NMSSM looks in its simplest form like

$$\mathcal{W}_{\mathsf{NMSSM}} = \mathcal{W}_{\mathsf{MSSM}}|_{\mu=0} + \lambda \mathsf{SH}_{\mathsf{u}}\mathsf{H}_{\mathsf{d}} + rac{1}{3}\kappa\mathsf{S}^{\mathsf{3}}$$

* In the NMSSM (U. Ellwanger, C. Hugonie and A. M. Teixeira, [arXiv:0910.1785]), $m_h \approx 125$ GeV can be achieved with tan $\beta \approx 2$

NMSSM has drawbacks that can be debated (W_{NMSSM} invariant under a discrete \mathbb{Z}_3 symmetry \rightarrow domain walls, S. A. Abel, S. Sarkar and P. L. White, [arXiv:hep-ph/9506359]) \rightarrow variants of the NMSSM

Possible solutions

* Generating an effective μ term thanks to a Yukawa coupling λ between ${\rm H_{u}, H_{d}}$ and a new scalar field S

 $\mathcal{W}_{MSSM} \rightarrow \mathcal{W}_{MSSM}|_{\mu=0} + \lambda SH_uH_d$

* Avoiding very small λ (new U(1)_{PQ} global symmetry \rightarrow axion searches), the NMSSM looks in its simplest form like

$$\mathcal{W}_{\mathsf{NMSSM}} = \mathcal{W}_{\mathsf{MSSM}}|_{\mu=0} + \lambda \mathsf{SH}_{\mathsf{u}}\mathsf{H}_{\mathsf{d}} + rac{1}{3}\kappa\mathsf{S}^{\mathsf{3}}$$

* In the NMSSM (U. Ellwanger, C. Hugonie and A. M. Teixeira, [arXiv:0910.1785]), $m_h \approx 125$ GeV can be achieved with tan $\beta \approx 2$

NMSSM has drawbacks that can be debated (W_{NMSSM} invariant under a discrete \mathbb{Z}_3 symmetry \rightarrow domain walls, S. A. Abel, S. Sarkar and P. L. White, [arXiv:hep-ph/9506359]) \rightarrow variants of the NMSSM

* Promoting the new $U(1)_{PQ}$ global symmetry to a new Abelian gauge symmetry

The model

Introduction

The model

3 RH sneutrino DM candidate

4 Low tan β region

5 Conclusions

E₆ inspired model

- * Models with extended gauge symmetries are well motivated within the context of Beyond the Standard model (GUT scale models, extra-dimension motivations, superstring models, strong dynamics models, little Higgs models,...)
- * One of the most analysed U(1) extension originates from a string-inspired E₆ grand unified gauge group (P. Langacker and J. Wang, [arXiv:hep-ph/9804428], S.F. King, S. Moretti and R. Nevzorov, [arXiv:hep-ph/0510419],...) E₆ \rightarrow SU(3)_c \times SU(2)_L \times U(1)_Y \times U(1)_X \times U(1)_{ψ}

E₆ inspired model

- * Models with extended gauge symmetries are well motivated within the context of Beyond the Standard model (GUT scale models, extra-dimension motivations, superstring models, strong dynamics models, little Higgs models,...)
- * One of the most analysed U(1) extension originates from a string-inspired E₆ grand unified gauge group (P. Langacker and J. Wang, [arXiv:hep-ph/9804428], S.F. King, S. Moretti and R. Nevzorov, [arXiv:hep-ph/0510419],...) E₆ \rightarrow SU(3)_c \times SU(2)_L \times U(1)_Y \times U(1)_{χ} \times U(1)_{ψ}
- * Low energy gauge symmetry considered : SU(3)_c × SU(2)_L × U(1)_Y × U'(1) Coupling constants : g₃, g₂, g_Y and g'₁ = $\sqrt{\frac{5}{3}}$ g_Y
- ***** U'(1) charge :

$$\mathcal{Q}' = \cos \theta_{\mathsf{E}_6} \mathcal{Q}'_{\chi} + \sin \theta_{\mathsf{E}_6} \mathcal{Q}'_{\psi}, \qquad \theta_{\mathsf{E}_6} \in [-\pi/2, \pi/2]$$

* MSSM fields + RH (s)neutrinos + new gauge boson (gaugino) + new singlet (singlino) + O(TeVs) = UMSSM

	\mathcal{Q}_Q'	\mathcal{Q}'_u	\mathcal{Q}_{d}'	\mathcal{Q}_L'	$\mathcal{Q}'_{ u}$	\mathcal{Q}'_e	\mathcal{Q}'_{H_u}	\mathcal{Q}'_{H_d}	$\mathcal{Q}_{\mathcal{S}}'$	
$\sqrt{40}Q'_{\chi}$	-1	$^{-1}$	3	3	-5	-1	2	-2	0	$\Rightarrow \theta_{E_6} = 0$
$\sqrt{24} \mathcal{Q}_{\psi}^{\prime}$	1	1	1	1	1	1	-2	-2	4	$\Rightarrow \theta_{E_6} = \pi/2$

Content

Superpotential :

$$\mathcal{W}_{\mathsf{UMSSM}} = \mathcal{W}_{\mathsf{MSSM}}|_{\mu=0} + \lambda \mathsf{SH}_{\mathsf{u}}\mathsf{H}_{\mathsf{d}} + \tilde{\nu}_{\mathsf{R}}^{*}\mathsf{y}_{\nu}\widetilde{\mathsf{L}}\mathsf{H}_{\mathsf{u}} + \mathcal{O}(\mathsf{TeVs})$$

- * As the NMSSM, this model solves the μ -problem : $\mu = \lambda \frac{v_s}{\sqrt{2}}$
- * Higgs sector : MSSM fields + 1 singlet \Rightarrow 3 CP-even Higgs bosons $h_i, i \in \{1, 2, 3\}$ New D-terms for the SM-like Higgs boson : $m_{h_1}^2 \le M_Z^2 \cos^2 2\beta + \frac{1}{2}\lambda^2 v^2 \sin^2 2\beta + g_1'^2 v^2 (\mathcal{Q}'_{H_d} \cos^2 \beta + \mathcal{Q}'_{H_u} \sin^2 \beta)^2 + \Delta m_h^2$
- * Gauge sector : Physical abelian gauge bosons : Z_1 and Z_2 , mixing between the Z of the SM and the Z', α_Z is the mixing angle $\Rightarrow \tan \beta$ constrained

$$\begin{aligned} \mathbf{Z}_{1} &= \cos \alpha_{\mathbf{Z}} \mathbf{Z} + \sin \alpha_{\mathbf{Z}} \mathbf{Z}' \\ \mathbf{Z}_{2} &= -\sin \alpha_{\mathbf{Z}} \mathbf{Z} + \cos \alpha_{\mathbf{Z}} \mathbf{Z}' \\ \cos^{2} \beta &= \frac{1}{\mathcal{Q}'_{\mathsf{H}_{\mathsf{d}}} + \mathcal{Q}'_{\mathsf{H}_{\mathsf{u}}}} \left(\frac{\sin 2\alpha_{\mathbf{Z}} (\mathsf{M}^{2}_{\mathsf{Z}_{1}} - \mathsf{M}^{2}_{\mathsf{Z}_{2}})}{\mathbf{v}^{2} \mathbf{g}'_{1} \sqrt{\mathbf{g}^{2}_{\mathsf{Y}} + \mathbf{g}^{2}_{2}}} + \mathcal{Q}'_{\mathsf{H}_{\mathsf{u}}} \right) \end{aligned}$$

* Gauginos sector : 6 neutralinos in the basis $(\widetilde{B}, \widetilde{W}^3, \widetilde{H}^0_d, \widetilde{H}^0_u, \widetilde{S}, \widetilde{B'})$

Content

* To sum up :

Content

Content

* To sum up :

Right-Handed (RH) sneutrinos : are they viable DM candidates ? *

RH sneutrino DM candidate

RH sneutrino DM candidate

Introduction

The mode

4 Low tan β region

5 Conclusions

Jonathan Da Silva (U. Manchester) Phenomenological aspects of the UMSSM Manchester, 21/03/2014 15 / 31

WIMP annihilation

 $\begin{array}{l} \mbox{Parameter space regions with Ω_{WIMP}h^2 $\approx 0.1 \Rightarrow need to increase the annihilation cross} \\ \mbox{section : interesting WIMP mass} \end{tabular} \end{tabular} \begin{tabular}{l} \mbox{from 50 GeV to TeV-scale} \\ \end{tabular} \end{tabular} \end{tabular} \end{tabular}$

- ✗ WIMP mass near m_{h1}/2
- * WIMP mass near $M_{Z_2}/2$ (also $m_{h_i}/2$)
- * WIMP mass near m_{hi}/2 or above W pair threshold
- Coannihilation processes (mainly higgsino-like)

Scattering on nucleons

For some $U^\prime(1)$ models we can have a good suppression of the gauge boson or/and Higgs boson contribution

here $U(1)_{\psi} \Rightarrow \theta_{E_6} = \pi/2$

Jonathan Da Silva (U. Manchester) Phenomenological aspects of the UMSSM Manchester, 21/03/2014 17 / 31

Scattering on nucleons

For other models, huge constraints on the parameter space appear here U(1) $_{\eta} \Rightarrow \tan \theta_{E_6} = -\sqrt{5/3}$ OK, $\Delta m_{d,s}$, XENON100, both

Jonathan Da Silva (U. Manchester) Phenomenological aspects of the UMSSM Manchester, 21/03/2014 18 / 31

Scattering on nucleons

Abelian gauge boson contribution to direct detection cross section :

$$\begin{split} \sigma_{\tilde{\nu}_{\mathsf{R}}\mathsf{N}}^{\mathbf{Z}_{1},\mathbf{Z}_{2}} = & \frac{\mu_{\tilde{\nu}_{\mathsf{R}}\mathsf{N}}^{2}}{\pi} (\mathbf{g}_{1}^{\prime} \, \mathcal{Q}_{\nu}^{\prime})^{2} [(\mathbf{y}(1-4\mathbf{s}_{\mathsf{W}}^{2})+\mathbf{y}^{\prime})\mathbf{Z} + (-\mathbf{y}+2\mathbf{y}^{\prime})(\mathbf{A}-\mathbf{Z})]^{2} \\ \mathbf{y} = & \frac{\mathbf{g}_{\mathsf{Y}} \sin \alpha_{\mathsf{Z}} \cos \alpha_{\mathsf{Z}}}{4 \sin \theta_{\mathsf{W}}} \left(\frac{1}{\mathsf{M}_{\mathsf{Z}_{2}}^{2}} - \frac{1}{\mathsf{M}_{\mathsf{Z}_{1}}^{2}} \right), \, \mathbf{y}^{\prime} = -\frac{\mathbf{g}_{1}^{\prime}}{2} \, \mathbf{Q}_{\mathsf{V}}^{\prime \mathsf{d}} \left(\frac{\sin^{2} \alpha_{\mathsf{Z}}}{\mathsf{M}_{\mathsf{Z}_{1}}^{2}} + \frac{\cos^{2} \alpha_{\mathsf{Z}}}{\mathsf{M}_{\mathsf{Z}_{2}}^{2}} \right) \end{split}$$

Jonathan Da Silva (U. Manchester) Phenomenological aspects of the UMSSM Manchester, 21/03/2014 19 / 31

Low tan β region

Introduction

The mode

3 RH sneutrino DM candidate

4 Low tan β region

5 Conclusions

Constraints - Z'

* Z' heavy \Rightarrow heavy singlet-like Higgs boson \Rightarrow h₂ mostly doublet-like

ATLAS Collaboration, http://cds.cern.ch/record/1525524

Constraints - DM

- * DM observables for either neutralino or RH sneutrino DM candidate :
 - * $\Omega_{LSP}h^2 < 0.1221$ (2 σ Planck+WP+highL+BAO upper bound)
 - * SI WIMP-nucleon cross section limits from XENON100 (a posteriori)

Constraints - Higgs + low energy observables

- * Theoretical uncertainties (see B. C. Allanach, A. Djouadi, J. L. Kneur, W. Porod, P. Slavich, [arXiv:hep-ph/0406166]) $\rightarrow m_{h_1} \in [120.63, 130.63]$ GeV
- ★ Higgs boson signal strengths and low energy observables (a posteriori) ⇒ Modification of the NMSSMTools code : UMSSMTools Limits on signal strengths using G. Bélanger, B. Dumont, U. Ellwanger, J. F. Gunion, S. Kraml, [arXiv:1306.2941] : $\chi_i^2 ≤ 6$ with h₁ → i, i ∈ γγ, VV*, bb, $\tau^+\tau^-$

Observable	Value
$\mathscr{B}(B^{\pm} \to \tau^{\pm} \nu_{\tau})$	$(0.99\pm0.25) imes~10^{-4}$ UTfit
$\mathscr{B}(B^0_s o \mu^+ \mu^-)$	$(2.95^{+0.74}_{-0.67}) imes 10^{-9}$ LHCb $+$ CMS
ΔM_s	$17.719 \pm 0.043 ~ \mathrm{ps}^{-1}$ HFAG
ΔM_d	$0.507 \pm 0.004 \; \mathrm{ps}^{-1}$ hfag
$\mathscr{B}(ar{B}^0 o X_s \gamma)$	$(3.55\pm0.24\pm0.09) imes~10^{-4}$ hfag

Scan

Scanning the parameter space :

- Nuisance parameters :
 - * $m_t = 175.5 \pm 1$ GeV PDG 2012
 - * Quark content of the nucleon (from G. Bélanger, F. Boudjema, A. Pukhov, A. Semenov, [arXiv:1305.0237])

Parameter	Value
m_u/m_d	$\textbf{0.46} \pm \textbf{0.05}$
m_s/m_d	$\textbf{27.5} \pm \textbf{0.3}$
$\sigma_{\pi N}$	$34 \pm 2 \; \text{MeV}$
σ_s	$42~\pm~5~MeV$

UMSSM parameters :

Parameter	Range	Parameter	Range
m _{ve}	[0.05, 2] TeV	A_{λ}	[0, 4] TeV
M _Z ,	[2.2, 7] TeV	$\mathbf{A_t}, \mathbf{A_b}, \mathbf{A_{ au}}$	[-4, 4] TeV
α_{z}	$[-10^{-3}, 10^{-3}]$ rad	$\mathbf{m}_{ ilde{0}_3}, \mathbf{m}_{ ilde{0}_3}, \mathbf{m}_{ ilde{\mathbf{d}}_3}, \mathbf{m}_{ ilde{\mathbf{L}}_3}, \mathbf{m}_{ ilde{\mathbf{e}}_3}$	[0, 3] TeV
θ_{E_6}	[- $\pi/2$, $\pi/2$] rad	μ,M_1,M_1'	[0.1, 2] TeV

First and second generation sfermion soft mass terms at 3 TeV

* tan $\beta \approx 1$ + TeV-scale M_S \Rightarrow expected m_{h1} : large contribution from pure UMSSM as well as one-loop stop terms

Jonathan Da Silva (U. Manchester) Phenomenological aspects of the UMSSM Manchester, 21/03/2014 25 / 31

Results

Sfermion masses

Important UMSSM contribution to sfermion masses (dependent on θ_{E_6}) : $\Delta_{f} = \tfrac{1}{2} {g_1'}^2 \mathcal{Q}_{f}' (\mathcal{Q}_{H_d}' v_d^2 + \mathcal{Q}_{H_u}' v_u^2 + \mathcal{Q}_S' v_s^2)$ \Rightarrow Condition on neutral LSP put strong constraints on θ_{E_6}

LSP abundance

* \tilde{B}, \tilde{H} and $\tilde{\nu}_{R}$ LSP with the experimentally allowed abundance

Results

Direct detection

- **B**, **H** and $\tilde{\nu}_{R}$ LSP with the wanted abundance
- DM direct detection experiments can probe entirely some regions, especially for $\tilde{\nu}_R$ LSP

Results

h₁ signal strength and h₂ bounds

h₁ signal strength mostly compatible with current limits, but also useful to exclude "light" h₂ (\leq 300 GeV); large branching ratio into SM-like Higgs boson for such h₂

Jonathan Da Silva (U. Manchester) Phenomenological aspects of the UMSSM Manchester, 21/03/2014 29 / 31

Conclusions

Introduction

The model

3 RH sneutrino DM candidate

4 Low tan β region

Conclusions

- * RH sneutrinos are viable DM candidates in the UMSSM
- * New D-terms in the UMSSM \Rightarrow low tan β values still allowed for TeV-scale M_S \Rightarrow sfermion sector impacted
- * χ_1^0 or $\tilde{\nu}_{\rm R}$ LSP that does not overclose the Universe exclude a large region of the parameter space
- * Viable or excluded regions depend strongly on θ_{E_6}
- * XENON1T would probe entirely some scenarios
- * Study of the SM-like Higgs boson puts bounds on the second CP-even Higgs boson : $m_{h_2}\lesssim 300$ GeV excluded in the UMSSM

Conclusions

- * RH sneutrinos are viable DM candidates in the UMSSM
- * New D-terms in the UMSSM \Rightarrow low tan β values still allowed for TeV-scale M_S \Rightarrow sfermion sector impacted
- * χ_1^0 or $\tilde{\nu}_R$ LSP that does not overclose the Universe exclude a large region of the parameter space
- * Viable or excluded regions depend strongly on θ_{E_6}
- * XENON1T would probe entirely some scenarios
- * Study of the SM-like Higgs boson puts bounds on the second CP-even Higgs boson : $m_{h_2}\lesssim 300$ GeV excluded in the UMSSM

Thanks for your attention !

BACKUP

Jonathan Da Silva (U. Manchester) Phenomenological aspects of the UMSSM Manchester, 21/03/2014

Jonathan Da Silva (U. Manchester) Phenomenological aspects of the UMSSM Manchester, 21/03/2014 31 / 31

BACKUP

New contribution from the Z' to $\Delta \rho: \Delta \rho < 2 \times 10^{-3} \rightarrow -6.5 \times 10^{-4} \lesssim \alpha_Z \lesssim 6.9 \times 10^{-4}$

