The right-handed sneutrino Cold Dark Matter

Jonathan Da Silva

Laboratoire d'Annecy-le-Vieux de Physique Théorique Beginning of 2nd year of PhD, Annecy-le-Vieux G. Bélanger, J. Da Silva and A. Pukhov, arXiv:1110.2414v1 [hep-ph]

Outline

Outline

Motivations

- Dark Matter and supersymmetry
- Some candidates

The model

- Contents
- Constraints

3

CDM interactions

- WIMP annihilation
- Scattering on nucleons

Some results

- Characteristics of the global scan
- Output

Conclusion and perspectives

Motivations

Motivations

- Dark Matter and supersymmetry
- Some candidates

2) The mode

- Contents
- Constraints

CDM interactions

- WIMP annihilation
- Scattering on nucleons

Some results

Characteristics of the global scanOutput

Conclusion and perspectives

Solving Dark Matter (DM) issue :

CMB, rotation curves, Bullet cluster, ... \Rightarrow need to introduce weakly interacting, stable particles

Solving Dark Matter (DM) issue :

CMB, rotation curves, Bullet cluster, ... \Rightarrow need to introduce weakly interacting, stable particles

 \Rightarrow I considered massive particles (around GeV), Cold Dark Matter

Solving Dark Matter (DM) issue :

 \Rightarrow I considered massive particles (around GeV), Cold Dark Matter

Interests on Supersymmetry (SUSY) :

Hierarchy problem, unification of the couplings, ...

 \Rightarrow also addition of new particles interacting weakly with standard particles

Solving Dark Matter (DM) issue :

 \Rightarrow I considered massive particles (around GeV), Cold Dark Matter

Interests on Supersymmetry (SUSY) :

Hierarchy problem, unification of the couplings, ...

 \Rightarrow also addition of new particles interacting weakly with standard particles

\Rightarrow Dark Matter candidates in supersymmetric models

Motivations

- Dark Matter and supersymmetry
- Some candidates

2) The mode

- Contents
- Constraints

CDM interactions

- WIMP annihilation
- Scattering on nucleons

Some results

Characteristics of the global scanOutput

Conclusion and perspectives

Assuming R-parity :

- 2 WIMPs candidates in the MSSM :
 - Lightest neutralino : a lot of studies \Rightarrow good DM candidate
 - ▶ LH sneutrino : too high coupling with $Z^0 \Rightarrow$ don't satisfy experimental constraints on spin independent direct detection \Rightarrow bad DM candidate

Assuming R-parity :

- 2 WIMPs candidates in the MSSM :
 - ► Lightest neutralino : a lot of studies ⇒ good DM candidate
 - ▶ LH sneutrino : too high coupling with $Z^0 \Rightarrow$ don't satisfy experimental constraints on spin independent direct detection \Rightarrow bad DM candidate
- Others SUSY candidates to DM :
 - Gravitino, axino, …
 - SUSY partner of the RH neutrino : coupled with other particles, mixed with LH sneutrino, sterile, ...

Assuming R-parity :

- 2 WIMPs candidates in the MSSM :
 - ► Lightest neutralino : a lot of studies ⇒ good DM candidate
 - ▶ LH sneutrino : too high coupling with $Z^0 \Rightarrow$ don't satisfy experimental constraints on spin independent direct detection \Rightarrow bad DM candidate
- Others SUSY candidates to DM :
 - Gravitino, axino, ...
 - SUSY partner of the RH neutrino : coupled with other particles, mixed with LH sneutrino, sterile, ...

$\Rightarrow \mbox{I focused on a RH sneutrino supersymmetric particle} \\ \mbox{of the a Dirac RH neutrino}$

Assuming R-parity :

- 2 WIMPs candidates in the MSSM :
 - Lightest neutralino : a lot of studies \Rightarrow good DM candidate
 - ▶ LH sneutrino : too high coupling with $Z^0 \Rightarrow$ don't satisfy experimental constraints on spin independent direct detection \Rightarrow bad DM candidate
- Others SUSY candidates to DM :
 - Gravitino, axino, …
 - SUSY partner of the RH neutrino : coupled with other particles, mixed with LH sneutrino, sterile, ...

\Rightarrow I focused on a RH sneutrino supersymmetric particle of the a Dirac RH neutrino

 \Rightarrow This candidate couples to new vector, scalar field, adding a new abelian gauge group

The model

Motivations

- Dark Matter and supersymmetry
- Some candidates

The model

- Contents
- Constraints

CDM interactions

- WIMP annihilation
- Scattering on nucleons

Some results

Characteristics of the global scanOutput

Conclusion and perspectives

- Symmetry group : $SU(3)_c \times SU(2)_L \times U(1)_Y \times U'(1)$ Coupling constants associated : g_3 , g_2 , g_Y and $g'_1 = g_1 = \sqrt{\frac{5}{3}}g_Y$
- U'(1) stem from E_6 model

 \Rightarrow Model implemented at tree-level in Unitary and Feynman gauge in LanHEP

- Symmetry group : $SU(3)_c \times SU(2)_L \times U(1)_Y \times U'(1)$ Coupling constants associated : g_3 , g_2 , g_Y and $g'_1 = g_1 = \sqrt{\frac{5}{3}}g_Y$
- U'(1) stem from E_6 model
- \Rightarrow Model implemented at tree-level in Unitary and Feynman gauge in LanHEP

Some differences with the MSSM :

 Gauge sector : Physical abelian gauge bosons : Z₁ and Z₂, mixing of the Z⁰ of the SM and Z'

- Symmetry group : $SU(3)_c \times SU(2)_L \times U(1)_Y \times U'(1)$ Coupling constants associated : g_3 , g_2 , g_Y and $g'_1 = g_1 = \sqrt{\frac{5}{3}}g_Y$
- U'(1) stem from E_6 model

 \Rightarrow Model implemented at tree-level in Unitary and Feynman gauge in LanHEP

Some differences with the MSSM :

- Gauge sector : Physical abelian gauge bosons : Z_1 and Z_2 , mixing of the Z^0 of the SM and Z'
- Higgs sector : 1 CP odd Higgs A^0 , 5 CP even Higgs : h^{\pm} , h_1 , h_2 and h_3 singlet-like Higgs (h_2 or h_3) mass near Z_2 mass including pure UMSSM terms + radiative corrections $\Rightarrow m_{h_1}$ above LEP limits

- Symmetry group : $SU(3)_c \times SU(2)_L \times U(1)_Y \times U'(1)$ Coupling constants associated : g_3 , g_2 , g_Y and $g'_1 = g_1 = \sqrt{\frac{5}{3}}g_Y$
- U'(1) stem from E_6 model

 \Rightarrow Model implemented at tree-level in Unitary and Feynman gauge in LanHEP

Some differences with the MSSM :

- Gauge sector : Physical abelian gauge bosons : Z_1 and Z_2 , mixing of the Z^0 of the SM and Z'
- Higgs sector : 1 CP odd Higgs A^0 , 5 CP even Higgs : h^{\pm} , h_1 , h_2 and h_3 singlet-like Higgs (h_2 or h_3) mass near Z_2 mass including pure UMSSM terms + radiative corrections $\Rightarrow m_{h_1}$ above LEP limits

• Gauginos sector : 6 neutralinos in the basis $(\widetilde{B}, \widetilde{W}^3, \widetilde{H}^0_d, \widetilde{H}^0_u, \widetilde{S}, \widetilde{B'})$

Relevant free parameters : $M_{\tilde{\nu}_R}$, μ , A_{λ} , M_{Z_2} , θ_{E_6} , α_Z , M_1 , M'_1 . Soft terms at 2 TeV

Motivations

- Dark Matter and supersymmetry
- Some candidates

2 The model

- Contents
- Constraints

CDM interactions

- WIMP annihilation
- Scattering on nucleons

Some results

Characteristics of the global scanOutput

Conclusion and perspectives

On our CDM candidate :

- Relic density at 3σ with $\Omega_{_{WIMP}}h^2 = 0.1123 \pm 0.0035$
- Spin independent direct detection cross section

On our CDM candidate :

On the model in general :

• Higgs mass constraints from LEP and LHC : 114.4 GeV $< m_{h_1} <$ 144 GeV

On our CDM candidate :

- Relic density at 3σ with $\Omega_{WIMP} h^2 = 0.1123 \pm 0.0035$
- Spin independent direct detection cross section

On the model in general :

- Higgs mass constraints from LEP and LHC : 114.4 GeV $< m_{h_1} <$ 144 GeV
- New Z boson mass constraints from ATLAS :

Q' choice	Q_{ψ}	Q_N	Q_η	Q_{I}	Q_S	Q_{χ}
M_{Z_2} (TeV)	1.49	1.52	1.54	1.56	1.60	1.64

•
$$Z^0$$
 properties $\Rightarrow lpha_Z \lesssim 10^{-3}$

On our CDM candidate :

- Relic density at 3σ with $\Omega_{WIMP} h^2 = 0.1123 \pm 0.0035$
- Spin independent direct detection cross section

On the model in general :

- Higgs mass constraints from LEP and LHC : 114.4 GeV $< m_{h_1} <$ 144 GeV
- New Z boson mass constraints from ATLAS :

Q' choice	Q_{ψ}	Q_N	Q_η	Q_{I}	Q_S	Q_{χ}
M_{Z_2} (TeV)	1.49	1.52	1.54	1.56	1.60	1.64

- Z^0 properties $\Rightarrow \alpha_Z \lesssim 10^{-3}$
- LEP constraints on sparticles masses implemented in the micrOMEGAs code

On our CDM candidate :

- Relic density at 3σ with $\Omega_{WIMP} h^2 = 0.1123 \pm 0.0035$
- Spin independent direct detection cross section

On the model in general :

- Higgs mass constraints from LEP and LHC : 114.4 GeV $< m_{h_1} <$ 144 GeV
- New Z boson mass constraints from ATLAS :

Q' choice	Q_ψ	Q_N	Q_{η}	Q_{I}	Q_S	Q_{χ}
M_{Z_2} (TeV)	1.49	1.52	1.54	1.56	1.60	1.64

- Z^0 properties $\Rightarrow \alpha_Z \lesssim 10^{-3}$
- LEP constraints on sparticles masses implemented in the micrOMEGAs code
- B mesons physics constraints : ΔM_{d,s} mass differences (code adapted from a NMSSMTools routine)

CDM interactions

Motivations

- Dark Matter and supersymmetry
- Some candidates

2) The mode

- Contents
- Constraints

CDM interactions

WIMP annihilation

Scattering on nucleons

Some results

Characteristics of the global scanOutput

Conclusion and perspectives

Parameter space regions with $\Omega_{_{WIMP}} h^2 pprox 0.1 \Rightarrow$ need to increase the annihilation cross section :

Parameter space regions with $\Omega_{_{WIMP}}h^2pprox 0.1$ \Rightarrow need to increase the annihilation cross section :

Parameter space regions with $\Omega_{_{WIMP}}h^2pprox 0.1$ \Rightarrow need to increase the annihilation cross section :

Parameter space regions with $\Omega_{_{WIMP}}h^2pprox 0.1 \Rightarrow$ need to increase the annihilation cross section :

• WIMP mass near $m_{h_i}/2$ or above W pair threshold :

Parameter space regions with $\Omega_{_{WIMP}}h^2pprox 0.1 \Rightarrow$ need to increase the annihilation cross section :

• WIMP mass near $m_{h_i}/2$ or above W pair threshold :

 $\chi^{0}_{1.2}$ Jonathan Da Silva (LAPTH) h_1

 h_1

Ŧ

Motivations

- Dark Matter and supersymmetry
- Some candidates

2) The mode

- Contents
- Constraints

CDM interactions

- WIMP annihilation
- Scattering on nucleons

Some result

Characteristics of the global scanOutput

Conclusion and perspectives

 $\bullet~$ Mainly abelian gauge bosons contribution, h_1 for LSP mass $\lesssim 200~{\rm GeV}$

• Mainly abelian gauge bosons contribution, h_1 for LSP mass $\lesssim 200~{
m GeV}$

• Mainly abelian gauge bosons contribution, h_1 for LSP mass $\lesssim 200~{
m GeV}$

Some results

Motivations

- Dark Matter and supersymmetry
- Some candidates

2) The mode

- Contents
- Constraints

CDM interactions

- WIMP annihilation
- Scattering on nucleons

Some results

- Characteristics of the global scan
- Output

Conclusion and perspectives

Characteristics of the global scan

Fixed parameters				Free parameters		
Soft terms				Name	Domain of variation	
m _{Qi}	2 TeV	m _{Li}	2 TeV	$M_{\tilde{\nu}_R}$	[0, 1.5] TeV	
$m_{\overline{u}_i}$	2 TeV	$m_{\overline{d}_i}$	2 TeV	M_{Z_2}	[1.3, 3] TeV	
m _{ēi}	2 TeV	$m_{\bar{\nu}_i}$	2 TeV	μ	[0.1, 2] TeV	
$i \in \{1, 2, 3\}, j \in \{1, 2\}$				A_{λ}	[0, 2] TeV	
Trilinear couplings $+ M_K$			⊢ M _K	θ_{E_6}	[- $\pi/2$, $\pi/2$] rad	
At	1 TeV	A _b	0 TeV	α_Z	$[-3.10^{-3}, 3.10^{-3}]$ rad	
Ac	0 TeV	As	0 TeV	<i>M</i> ₁	[0.1, 2] TeV	
Au	0 TeV	A_d	0 TeV	M'_1	[0.1, 2] TeV	
A	0 TeV	M_K	1 eV	$M_2 = 2M_1$ et $M_3 = 6M_1$		

Motivations

- Dark Matter and supersymmetry
- Some candidates

2) The mode

- Contents
- Constraints

CDM interactions

- WIMP annihilation
- Scattering on nucleons

4

Some results

- Characteristics of the global scan
- Output

Conclusion and perspectives

Interesting WIMP mass from 50 GeV to TeV-scale , for following processes :

- *h*₁ resonance
- Z₂/singlet-like Higgs resonance
- Coannihilation with neutralinos, charginos (a few with sfermions)
- Annihilation into W pairs through Higgs exchange

Interesting WIMP mass | from 50 GeV to TeV-scale |, for following processes :

- h₁ resonance
- Z₂/singlet-like Higgs resonance
- Coannihilation with neutralinos, charginos (a few with sfermions)
- Annihilation into W pairs through Higgs exchange

Interesting WIMP mass | from 50 GeV to TeV-scale |, for following processes :

- h₁ resonance
- Z₂/singlet-like Higgs resonance
- Coannihilation with neutralinos, charginos (a few with sfermions)
- Annihilation into W pairs through Higgs exchange

Lower is $|\theta_{E_6}|$, higher are Z_2 processes in direct detection cross section \Rightarrow huge constraint

Large SUSY corrections proportional to $\frac{1}{t_{o}^4}$ \Rightarrow small values of t_{β} very constrained by ΔM_s :

Motivations

- Dark Matter and supersymmetry
- Some candidates

2) The mode

- Contents
- Constraints

CDM interactions

- WIMP annihilation
- Scattering on nucleons

Some results

- Characteristics of the global scan
- Output

Conclusion and perspectives

• RH sneutrino is a viable dark matter candidate

it respects experimental limits in the case of some processes :

- ▶ Resonance (*h*₁, *Z*₂ and singlet-like Higgs)
- Coannihilation (neutralinos, charginos, others sfermions)
- Annihilation into W pairs generally with exchange of h₁
- Direct detection experiments strongly constrain the model as well as ΔM_s

• RH sneutrino is a viable dark matter candidate

it respects experimental limits in the case of some processes :

- ▶ Resonance (*h*₁, *Z*₂ and singlet-like Higgs)
- Coannihilation (neutralinos, charginos, others sfermions)
- Annihilation into W pairs generally with exchange of h₁
- Direct detection experiments strongly constrain the model as well as ΔM_s

- This model could be also tested with indirect detection, other flavour physics observables, ...
- More careful study of the UMSSM Higgs sector in preparation
- Others projects in my Explora DOC exchange program in Durham like LHC limits in the NMSSM, ...

• RH sneutrino is a viable dark matter candidate

it respects experimental limits in the case of some processes :

- ▶ Resonance (*h*₁, *Z*₂ and singlet-like Higgs)
- Coannihilation (neutralinos, charginos, others sfermions)
- Annihilation into W pairs generally with exchange of h₁
- Direct detection experiments strongly constrain the model as well as ΔM_s

- This model could be also tested with indirect detection, other flavour physics observables, ...
- More careful study of the UMSSM Higgs sector in preparation
- Others projects in my Explora DOC exchange program in Durham like LHC limits in the NMSSM, ...

Thanks for your attention !

BACKUP

UMSSM fields

Chiral supermultiplets							
Supermultiplets		spin 0	spin 1/2	$SU(3)_c, SU(2)_L, U(1)_Y, U'(1)$			
squarks, quarks	Q	$(\widetilde{u}_L \ \widetilde{d}_L)$	$(u_L \ d_L)$	$(3, 2, \frac{1}{6}, Q'_Q)$			
(3 families)	ū	\widetilde{u}_R^*	ū _R	$(\bar{3}, 1, -\frac{2}{3}, \mathbf{Q}'_{u})$			
	ā	\widetilde{d}_R^*	\bar{d}_R	$(\bar{3}, 1, \frac{1}{3}, Q'_d)$			
sleptons, leptons	L	$(\widetilde{\nu}_L \ \widetilde{e}_L)$	$(\nu_L \ e_L)$	$(1, 2, -\frac{1}{2}, Q'_L)$			
(3 families)	$\bar{\nu}$	$\widetilde{\nu}_R^*$	$\bar{\nu}_R$	$(1, 1, 0, Q'_{\overline{\nu}})$			
	ē	\widetilde{e}_R^*	ē _R	$(1, 1, \frac{1}{6}, Q'_e)$			
Higgs, higgsinos	Hu	$(H_{u}^{+} H_{u}^{0})$	$(\widetilde{H}^+_u \ \widetilde{H}^0_u)$	$(1, 2, \frac{1}{2}, Q'_{H_{\mu}})$			
	H _d	$(H^0_d \ H^d)$	$(\widetilde{H}^0_d \ \widetilde{H}^d)$	$(1, 2, -\frac{1}{2}, Q'_{H_d})$			
	S	5	ŝ	$(1, 1, 0, Q'_S)$			
Vector supermultiplets							
Supermultiplets		spin 1/2	spin 1	$SU(3)_c$, $SU(2)_L$, $U(1)_Y$, $U'(1)$			
gluino, gluon		ĝ	g	(8, 1, 0, 0)			
winos, W bosons		$\widetilde{W}^{\pm} \widetilde{W}^3$	$W^{\pm} W^3$	(1 , 3 , 0, 0)			
bino, B boson		Ĩ	В	(1, 1, 0, 0)			
bino', B' boson		Β̈́′	Β'	(1, 1, 0, 0)			

Some new lagrangian terms

Superpotential :

$$W_{MSSM} = \bar{u}y_u QH_u - \bar{d}y_d QH_d - \bar{e}y_e LH_d + \mu H_u H_d$$
$$W_{UMSSM} = W_{MSSM}(\mu = 0) + \lambda SH_u H_d + \bar{\nu}y_\nu LH_u$$

Soft supersymmetry breaking :

$$\begin{split} \mathcal{L}_{soft}^{MSSM} &= -\frac{1}{2} (M_3 \widetilde{g} \widetilde{g} + M_2 \widetilde{W} \widetilde{W} + M_1 \widetilde{B} \widetilde{B} + \text{c.c.}) \\ &- (\widetilde{u}_R^* a_u \widetilde{Q} H_u - \widetilde{d}_R^* a_d \widetilde{Q} H_d - \widetilde{e}_R^* a_e \widetilde{L} H_d + \text{c.c.}) \\ &- \widetilde{Q}^\dagger m_Q^2 \widetilde{Q} - \widetilde{L}^\dagger m_L^2 \widetilde{L} - \widetilde{u}_R^* m_{\widetilde{e}}^2 \widetilde{u}_R - \widetilde{d}_R^* m_{\widetilde{d}}^2 \widetilde{d}_R - \widetilde{e}_R^* m_{\widetilde{e}}^2 \widetilde{e}_R \\ &- m_{H_u}^2 H_u^\dagger H_u - m_{H_d}^2 H_d^\dagger H_d - (bH_u H_d + \text{c.c.}) \\ \mathcal{L}_{soft}^{UMSSM} &= \mathcal{L}_{soft}^{MSSM} (b = 0) - \left(\frac{1}{2} M_1' \widetilde{B'} \widetilde{B'} + M_K \widetilde{B} \widetilde{B'} + \widetilde{\nu}_R^* a_\nu \widetilde{L} H_u + \text{c.c.}\right) \\ &- \widetilde{\nu}_R^* m_{\widetilde{\nu}}^2 \widetilde{\nu}_R - (\lambda A_\lambda S H_u H_d + \text{c.c.}) - m_S^2 S^* S \end{split}$$

LanHEP, A. Semenov, arXiv :0805.0555v1 [hep-ph]

Reason of constrained t_{β}

$$\begin{split} M_Z^2 &= M_{Z_1}^2 \cos^2 \alpha_{ZZ'} + M_{Z_2}^2 \sin^2 \alpha_{ZZ'} \\ M_{Z'}^2 &= M_{Z_1}^2 \sin^2 \alpha_{ZZ'} + M_{Z_2}^2 \cos^2 \alpha_{ZZ'}. \end{split}$$

$$\tan 2\alpha_{ZZ'} = \frac{2\Delta^2}{M_{Z'}^2 - M_Z^2} \quad \Longrightarrow \quad \sin 2\alpha_{ZZ'} = \frac{2\Delta^2}{M_{Z_2}^2 - M_{Z_1}^2}$$

∜

Knowing that

$$\Delta^2 = rac{g_1'\sqrt{g'^2+g_2^2}}{2} v^2 (Q_2' s_eta^2 - Q_1' c_eta^2),$$

∜

$$c_{eta}^2 = rac{1}{Q_1' + Q_2'} \left(rac{\sin 2lpha_{ZZ'}(M_{Z_1}^2 - M_{Z_2}^2)}{ v^2 g_1' \sqrt{g'^2 + g_2^2}} + Q_2'
ight).$$

BACKUP

Higgs masses

$$\begin{split} m_{A0}^2 &= \frac{\lambda A_\lambda \sqrt{2}}{\sin 2\phi} \mathbf{v} + \Delta_{EA} & \tan \phi = \frac{\mathbf{v} \sin 2\beta}{2\mathbf{v}_s} \\ m_{H\pm}^2 &= \frac{\lambda A_\lambda \sqrt{2}}{\sin 2\beta} \mathbf{v}_s - \frac{\lambda^2}{2} \mathbf{v}^2 + \frac{g_2^2}{2} \mathbf{v}^2 + \Delta_{\pm} & \tan \beta = \frac{\mathbf{v}_u}{\mathbf{v}_d} \\ M_{CPeven}^2 &: \\ \left(\mathcal{M}_+^0\right)_{11} &= \left[\frac{(g'^2 + g_2^2)^2}{4} + Q_1'^2 g_1'^2\right] (\mathbf{v}c_\beta)^2 + \frac{\lambda A_\lambda t_\beta \mathbf{v}_s}{\sqrt{2}} + \Delta_{11} \\ \left(\mathcal{M}_+^0\right)_{12} &= -\left[\frac{(g'^2 + g_2^2)^2}{4} - \lambda^2 - Q_1' Q_2' g_1'^2\right] \mathbf{v}^2 s_\beta c_\beta - \frac{\lambda A_\lambda \mathbf{v}_s}{\sqrt{2}} + \Delta_{12} \\ \left(\mathcal{M}_+^0\right)_{13} &= \left[\lambda^2 + Q_1' Q_3' g_{1'}^2\right] \mathbf{v}c_\beta \mathbf{v}_s - \frac{\lambda A_\lambda \mathbf{v}s_\beta}{\sqrt{2}} + \Delta_{13} \\ \left(\mathcal{M}_+^0\right)_{22} &= \left[\frac{(g'^2 + g_2^2)^2}{4} + Q_2'^2 g_1'^2\right] (\mathbf{v}s_\beta)^2 + \frac{\lambda A_\lambda \mathbf{v}_s}{t_\beta \sqrt{2}} + \Delta_{22} \\ \left(\mathcal{M}_+^0\right)_{23} &= \left[\lambda^2 + Q_2' Q_3' g_1'^2\right] \mathbf{v}s_\beta \mathbf{v}_s - \frac{\lambda A_\lambda \mathbf{v}c_\beta}{\sqrt{2}} + \Delta_{23} \\ \left(\mathcal{M}_+^0\right)_{33} &= Q_3'^2 g_1'^2 \mathbf{v}_s^2 + \frac{\lambda A_\lambda \mathbf{v}^2 s_\beta c_\beta}{\mathbf{v}_s \sqrt{2}} + \Delta_{33} \end{split}$$

Vernon Barger, Paul Langacker, Hye-Sung Lee and Gabe Shaughnessy, arXiv :hep-ph/0603247v3

Jonathan Da Silva (LAPTH)

Tests on the RH sneutrino dark matter

Direct detection constraint

2

Abelian gauge boson contribution to direct detection :

$$\begin{split} \sigma_{\tilde{\nu}_R N}^{Z_1, Z_2} &= \frac{\mu_{\tilde{\nu}_R N}^2}{\pi} (g_1' Q_{\tilde{\nu}}')^2 [(y(1 - 4s_W^2) + y')Z + (-y + 2y')(A - Z)]^2 \\ \text{with } y &= \frac{g' \sin \alpha_Z \cos \alpha_Z}{4 \sin \theta_W} \left(\frac{1}{M_{Z_2}^2} - \frac{1}{M_{Z_1}^2}\right), \ y' &= -\frac{g_1'}{2} Q_V'^d \left(\frac{\sin^2 \alpha_Z}{M_{Z_1}^2} + \frac{\cos^2 \alpha_Z}{M_{Z_2}^2}\right) \end{split}$$

Coannihilation with sfermions

Sparticles sector :

$$M_{f}^{2} = \begin{pmatrix} m_{soft}^{2} + m_{f}^{2} + M_{Z0}^{2} \cos 2\beta (l_{f}^{3} - e_{f} \sin^{2} \theta_{W}) + \Delta_{f} & m_{f} (A_{f} - \mu(t_{\beta})^{-2l_{f}^{3}}) \\ m_{f} (A_{f} - \mu(t_{\beta})^{-2l_{f}^{3}}) & m_{\overline{soft}}^{2} + M_{Z0}^{2} \cos 2\beta (l_{f}^{3} - e_{\overline{f}} \sin^{2} \theta_{W}) + m_{f}^{2} + \Delta_{\overline{f}} \end{pmatrix}$$

where $\Delta_f = \frac{1}{2} {g'_1}^2 Q'_f (Q'_{H_d} v_d^2 + Q'_{H_u} v_u^2 + Q'_S v_s^2) \Rightarrow \text{Coannihilations}:$

 $heta_{E_6} > 0$: generally $ilde{t_1}$ $heta_{E_6} < 0$: generally RH down sqarks